Enhanced Analytical Simulation Tool for CO₂ Storage Capacity Estimation

DE-FE0009301

Seyyed A. Hosseini The University of Texas at Austin

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Transforming Technology through Integration and Collaboration August 16-18, 2016

Benefit to the Program/Goals and Objectives

- Project benefit
 - Support industry's ability to predict CO₂ storage capacity in geologic saline formations to within ±30 percent.
- Major goal
 - Develop an Enhanced Analytical Simulation Tool (EASITOOI) for simplified reservoir models to predict storage capacity of brine formations.
- Objectives
 - Provide fast, reliable and science-based estimate of storage capacity.
 - Integrate analytical/semi-analytical geomechanical models
 - Integrate brine extraction scenarios.
 - Provide sensitivity analysis.

Technical Status

EASiToolGUI				
Main Interface				د د
🖑 🔍 🔍 🖳 🎍				
GCCC	GULECOA		BUREAU OF JACKSON	8 50 500
GUP EDAT CARPON CENTE			GEOLOGY SCHEDULOT GEOCUSICES	
-1-RESERVOIR PARAMETERS		3-SIMULATION PARAMETERS	4-NPV	
	Min Ma		Drilling Cost (SM/well)	VIC S
Pressure [MPa]	20 15 25	Simulation Time [years] 20	Drining Cost [sivi/wen]	<u>≱</u> 30 1 2 -500
Tempreture (C)	65 50 80	Injection Well Radius [m] 0.1	Operation Cost [\$K/well/year] 500	
		Max Injection Pressure (MPa) 30	Monitoring Cost [\$K/year/km^2] 50	0°_{20} -1000
Thickness [m]	100 50 15	wax injection r lessure (wir a)	Ten Credit (2011-2)	Number of Injection Wells Number of Injection Wells
Salinity [mol/Kg]	2 1 3	Estimate Max Injection Pressure Internally	Tax Credit [S/ton]	CO2 Plume Extension Well Rate (ton/day)
	0.2 0.15 0.2	Density of Porous Media [Kg/m3]	Extractors Drilling Cost [\$M/well] 1	
Porosity	0.2 0.13 0.2		Extractors Operation Cost 500	
Permeability [mD]	100 10 25	Total Stress Ratio (V/H)	j\$K/weii/yearj	
Rock Compressibility [1/Pa]	5e-10 3.5e-10 6.5e	Biot Coefficient	5-EXTRACTION PARAMETERS	
		- Reissen's ratio	Number of Extractors 4	\succ 4 \succ 4
Reservoir Area [km^2]	100	Poisson's faile	Minimum Extraction 29	
Basin Area [km^2]	100	Coefficient of Thermal Expansion [1/K]	Maximum Extraction Rate 2000	
Boundary Condition	Clos -	Bottom Hole Temperature Drop [K]	[m^3/day/well]	
,	Ci03 •		Run	X, km X, km
2-RELATIVE PERMEABILITY (Brooks-Corey)	Young's Modulus [GPa]	Simulation Time [sec]= 100	
Residual Water Saturation	0.5 0.3 0.7	Depth [m]		Permeability Thickness
Residual Gas Saturation		Estimated May Islantian Pressure (MP-1	Number of Injection Wells 9	Porosity Rock Comp.
Nesidual Gas Saturation	0.05 0 0.1	Estimated Max Injection Pressure [MP8]	Export Image and Output Files (Slow)	Temperature
m	3 2 4	Max Injection Rate [ton/day/well] 2000	Visit our website	
n	3 2 4	Max Number of Injectors		Săr - Kra0 -
Kra0	1 1 1			
K 0			GASILOO	Pressure 3
Krg0	0.3 0.20 0.4	Sensitivity Analysis (Slow)	CO2 Geological Capacity Estimation	20 30 40 50 60 70 80
				Capacity

Technical Status

	DOE/NETL	CSLF	USGS	EASiTool	Numerical Simulators
Reservoir scale	Yes	Yes	Yes	Yes	Yes
Accuracy	Low	Low	Low	Medium/High	High
Boundary conditions	No	No	No	Yes	Yes
Rock geomechanics	No	No	No	Yes	Yes
Brine management	No	No	No	Yes	Yes
Required expertise	Low	Low	Low	Low	High
Cost of use	Low	Low	Low	Low	High
Speed	High	High	High	High	Low
Dynamic	No	No	No	Yes	Yes
Sensitivity Analysis	No	No	Simple	Yes	Yes

Technical Status

Gulf Coast Carbon Center

- Tasks 2-4 completed
- NCE
- User feedback, Verification & Application

· Finding the optimized rate to maximize storage capacity

• Normal fault system

 $P_{\max} = \frac{1}{\left[2\alpha - \beta_v - \beta_h - (\beta_v - \beta_h)\cos 2\theta + (\beta_v - \beta_h)\sin 2\theta / \mu\right]}.$

 $\left[\left\{(1+K)+(1-K)\cos 2\theta-(1-K)\sin 2\theta/\mu\right\}\sigma_{v0}-\left\{(\beta_v+\beta_h)+(\beta_v-\beta_h)\cos 2\theta-(\beta_v-\beta_h)\sin 2\theta/\mu\right\}P_{pi}-\frac{2\alpha_T E\Delta T}{1-2\nu}\right]$

Reverse fault system

 $P_{\max} = \frac{1}{\left[2\alpha - \beta_{h} - \beta_{v} - (\beta_{h} - \beta_{v})\cos 2\theta + (\beta_{h} - \beta_{v})\sin 2\theta/\mu\right]} \cdot \left[\left\{(K+1) + (K-1)\cos 2\theta - (K-1)\sin 2\theta/\mu\right\}\sigma_{v0} - \left\{(\beta_{h} + \beta_{v}) + (\beta_{h} - \beta_{v})\cos 2\theta - (\beta_{h} - \beta_{v})\sin 2\theta/\mu\right\}P_{pi} - \frac{2\alpha_{T}E\Delta T}{1 - 2\nu}\right]$

• Strike-slip fault system

- Kim, S, and Hosseini, S. A., 2014, Geological CO₂ storage: incorporation of pore-pressure/stress coupling and thermal effects to determine maximum sustainable pressure limit: Energy Procedia, v. 63, p. 3339-3346,
- Kim, S, and Hosseini, S. A., 2016, Study on the Ratio of Pore-Pressure/Stress Changes During Fluid Injection and Its Implications for CO2 Geologic Storage, Journal of Petroleum Science and Engineering, in press.

9

Accomplishments to Date

Horizontal effective stress, σ'_{h} (MPa)

_ 🗆 🗙

Accomplishments to Date

		0.77		-	1.0
	ĿΑ	SH	00	G	
_	_	_	_	_	_

Main Interface

🖑 🔍 🔍 🐙 🍓

	GUL	F COAST	CARBON CENTER		Bureau of Economic Geology -	JACKS SCHOOL OF SEDEC	ON ESGE
1-RESERVOIR PARAMETERS			3-SIMULATION PARAMETERS		4-NPV		
Pressure IMPa1	20		Simulation Time [years]	20	Drilling Cost [\$M/we	ell]	1
Tempreture IC1	65		Injection Well Radius [m]	0.1	Operation Cost [\$K/	well/year]	500
Thickness [m]	100		Max Injection Pressure [MPa]	30	Monitoring Cost [\$K	/year/km^2]	50
Palinity (mol/Ka)	2		Estimate Max Injection Pressure In	ternally	Tax Credit [\$/ton]		10
Dennik (Moling)	0.2		Density of Porous Media [Kg/m3]		Extractors Drilling C	ost [\$M/weII]	1
Porosity	100		Total Stress Ratio (V/H)		Extractors Operation [\$K/well/year]	n Cost	500
Permeability (mb)	5e-10		Biot Coefficient		5-EXTRACTION PA	RAMETERS	
Posseniais Area Ikm/21	100		Poisson's ratio		Number of Extractor	rs O	•
Rasin Area [km^2]	100		Coefficient of Thermal Expansion [1/K]		Minimum Extraction Pressure [MPa]	n	29
Boundary Condition	Clas		Bottom Hole Temperature Drop (K)		Maximum Extractio [m^3/day/well]	n Rate	1000
boundary condition	CI0S 🔻		Young's Modulus (GPa)		F	Run	
2-RELATIVE PERMEABILITY (Brooks-Co	orey)	i oange moonine (or al		Simulation T	ïme [sec]= *	***
Residual Water Saturation	0.5		Depth [m]		6-RESULT CONTRO	OLS	
Residual Gas Saturation	0.1		Estimated Max Injection Pressure [MPa]		Number of Injectio	n Wells	•
m	3		Max Injection Rate [ton/day/well]	500	Export Image a	and Output Fil	es (Slow)
n	3		Max Number of Injectors 4	00 👻		website.	
Kra0	1		Uniform Injection/Extraction Rate			iTo	പ
Krg0	0.3		Sensitivity Analysis (Slow)			gical Capacity	Estimation

Brine Extraction

• Brine extraction improves injectivity (capacity) and reduce the risk of exceeding the fracture pressure.

• Finding the optimized rate to maximize storage capacity

Closed Boundary, 4 Extractors

C EASiToolGUI					- 🗆 X
Main Interface					۲.
🖑 🔍 🔍 🖳 🎍					
GCCC	GULE COAST	CARBON CENTER	BUREAU OF JACKSON	8 ⁵⁰ 500 500	
GUU EDAST CARDON CINID			GEOLOGY SCHOOL OF GEORGESCES		
-1-RESERVOIR PARAMETERS		3-SIMULATION PARAMETERS	4-NPV		
	Min Ma	Simulation Time (years) 20	Drilling Cost [\$M/well]	S S	~
Pressure [MPa]	20 15 25			Ž 30 / Z -500	a
Tempreture [C]	65 50 80	Injection Well Radius [m] 0.1	Operation Cost [\$K/well/year] 500		` \$
	100 50 150	Max Injection Pressure [MPa] 30	Monitoring Cost [\$K/year/km^2] 50	0 50 100 0 50	100
Thickness [m]			Tax Credit [\$/ton] 10	Number of Injection Wells Number of Injection	tion Wells
Salinity [mol/Kg]	2 1 3	Estimate Max Injection Pressure Internally		CO2 Plume Extension Well Rate (to	on/day)
Porosity	0.2 0.15 0.25	Density of Porous Media [Kg/m3]	Extractors Drilling Cost [\$M/well]	10	
		Total Stress Ratio (V/H)	Extractors Operation Cost 500 [\$K/well/year]	8 • • • 8 • •	•
Permeability [mD]	100 10 250				•
Rock Compressibility [1/Pa]	5e-10 3.5e-10 6.5e-10	Biot Coefficient	5-EXTRACTION PARAMETERS		•
Reservoir Area [km^2]	100	Poisson's ratio	Number of Extractors 4		
	_	Configuration of Theorem I Supervised 14/42	Pressure [MPa]	2 2	
Basin Area [km^2]	100	Coefficient of Therman Expansion [17K]	Maximum Extraction Rate 2000 [m^3/day/well]		
Boundary Condition	Clos 💌	Bottom Hole Temperature Drop [K]		0 5 10 0 5	10
J		Young's Modulus [GPa]	Run	X , km X , km	· · · · · · · · · · · · · · · · · · ·
-2-RELATIVE PERMEABILITY (Brooks-Corey)		Simulation Time [sec]= 100.	Permeability	
Residual Water Saturation	0.5 0.3 0.7	Depth [m]	6-RESULT CONTROLS	Porosity	-
Residual Gas Saturation	0.05 0 0.1	Estimated Max Injection Pressure [MPa]	Number of Injection Wells 9	Rock Comp	
m	3 2 4	Max Injection Rate Iton/day/well1 2000	Export Image and Output Files (Slow)	Krg0 - m -	-
			<u>Visit our website.</u>	Sgc - Sar -	-
	3 2 4	Max Number of Injectors 100 💌		- Kra0 - I	-
Kra0	1 1 1			Salinity Pressure	13
Krg0	0.3 0.20 0.4	Sensitivity Analysis (Slow)	CASITOOL	20 30 40 50 60 70	80
			CO2 Geological Capacity Estimation	Capacity	

Closed Boundary, 8 Extractors

C EASiToolGUI					_ _ X
Main Interface					ע
🖑 🔍 🔍 🖳 🎍					
GCCC			BUREAU OF JACKSON	80 200	
GUT CONTEMPOR CIVILIA			GEOLOGY SCHOOL OF GEORGESCES	0 5 70 X:25 → 0	ेष्ठ्
-1-RESERVOIR PARAMETERS	(3-SIMULATION PARAMETERS	4-NPV	Y: 60.22	×.
	Min Ma	Simulation Time (years)	Drilling Cost [SM/well]	₹ 60	Q
Pressure [MPa]	20 15 25				ÌQ I
Tempreture [C]	65 50 80	Injection Well Radius [m] 0.1	Operation Cost [\$K/well/year] 500		`\`
	400 50 450	Max Injection Pressure [MPa] 30	Monitoring Cost [\$K/year/km^2] 50	0 50 100 0	50 100
Thickness [m]	100 50 150		Tax Credit (S/top) 10	Number of Injection Wells Numb	er of Injection Wells
Salinity [mol/Kg]	2 1 3	Estimate Max Injection Pressure Internally		CO2 Plume Extension We	ll Rate (ton/dav)
	0.2 0.15 0.25	Density of Porous Media [Kg/m3]	Extractors Drilling Cost [\$M/well]	10	, , , , , , , , , , , , , , , , , , ,
Porosity			Extractors Operation Cost 500	8 🔺 🔺 8	· · · ·
Permeability [mD]	100 10 250	Total Stress Ratio (V/H)	,		• • • •
Rock Compressibility [1/Pa] 56	5e-10 3.5e-10 6.5e-10	Biot Coefficient	5-EXTRACTION PARAMETERS		
		Paissaa's ratio	Number of Extractors 8	\succ 4 \land \land \succ 4	• •
Reservoir Area [km^2]	100		Minimum Extraction 29 Pressure (MPa)		
Basin Area [km^2]	100	Coefficient of Thermal Expansion [1/K]	Maximum Extraction Rate 2000		
Boundary Condition		Bottom Hole Temperature Drop [K]	[m^3/day/well]		5 10
	Ja •		Run	X, km	X, km
2-RELATIVE PERMEABILITY (Bro	ooks-Corey)	Young's Modulus [GPa]	Simulation Time [sec]= 100		
Residual Water Saturation	0.5 0.3 0.7	Depth [m]	6.RESULT CONTROLS	Permeability Thickness	
Peridual Gas Saturation	0.05	Estimated New Islanding Deserves (NDs)	Number of Injection Wells 25	Porosity	-
Residual Gas Saturation	0.05 0 0.1	Estimated Max Injection Pressure [MPa]	Export Image and Output Files (Slow)	Rock Comp	-
m	3 2 4	Max Injection Rate [ton/day/well] 2000		m Sac	-
n	3 2 4	Max Number of Injectors 100 -		Sar - Kra0 -	-
Kra0	1 1 1			n Salinity	4.4
_			GASILOOL	Pressure	14 -
Krg0	0.3 0.20 0.4	Sensitivity Analysis (Slow)	CO2 Geological Capacity Estimation	40 60 80 100	120 140
				Capacity	

Closed Boundary, 16 Extractors

EASiToolGUI				
Main Interface				لا
🖑 🔍 🔍 🖳 🎍				
GCCC	GUIECOAST		BUREAU OF LACKSON	8 130 p 600 p 600 p
GLU EDAST CAREON CENT			GEOLOGY SCHOOLOF SECHCIESCES	
1-RESERVOIR PARAMETERS		3-SIMULATION PARAMETERS	4-NPV	
	Min Ma	Simulation Time (menu)	Drilling Cost (SM/well)	Ž ¹¹⁰ X: 25
Pressure [MPa]	20 15 25	Simulation Time (years) 20	Contraction of the second	
Tempreture [C]	65 50 80	Injection Well Radius [m] 0.1	Operation Cost [\$K/well/year] 500	
rempretare [0]		Max Injection Processo (MRs) 30	Monitoring Cost [\$K/year/km^2] 50	
Thickness [m]	100 50 150			Number of Injection Wells Number of Injection Wells
Salinity [mol/Kg]	2 1 3	Estimate Max Injection Pressure Internally	Tax Credit [\$/ton] 10	CO2 Plume Extension Well Pate (top/day)
	0.2 0.45 0.25	Density of Porous Media [Kg/m3]	Extractors Drilling Cost [\$M/well] 1	
Porosity	0.2 0.15 0.25		Extractors Operation Cost 500	
Permeability [mD]	100 10 250	Total Stress Ratio (V/H)	[\$K/well/year]	
Pack Comprossibility [1/Pa]	5e-10 3 5e-10 6 5e-10	Biot Coefficient	5-EXTRACTION PARAMETERS	
Rock compressionity [1/1 a]			Number of Extractors 16 💌	\succ 4 \land
Reservoir Area [km^2]	100	Poisson's ratio	Minimum Extraction 29	
Basin Area [km^2]	100	Coefficient of Thermal Expansion [1/K]	Pressure [MPa]	
		Bottom Hole Temperature Drop (K)	[m^3/day/well]	
Boundary Condition	Clos 💌	Bottom Hole Femperature Brop [K]	Run	X.km X.km
2-RELATIVE PERMEABILITY	Brooks-Corev)	Young's Modulus [GPa]		
Pasidual Water Saturation	05 02 07	Depth [m]	Simulation Time [sec]= 103.	Permeability
Residual Water Saturation	0.3 0.3 0.7		6-RESULT CONTROLS	
Residual Gas Saturation	0.05 0 0.1	Estimated Max Injection Pressure [MPa]	Number of Injection Wells 25	
m	3 2 4	Max Injection Rate [ton/day/well] 2000	Export image and Output Files (Slow)	m
n	3 2 4		Visit our website.	Sgc Sar
		Max Number of Injectors 100	·	Krau
KraU	1 1 1			Salinity 15
Krg0	0.3 0.20 0.4	Sensitivity Analysis (Slow)		50 100 150 200 250
			COL GEOIGECEI CAPACITY ESTIMATION	Capacity

Closed Boundary, 16 Extractors

EASiToolGUI				
Main Interface				
🖑 🔍 🔍 🖳 🍓				
GCCC	GULF COAST	CARBON CENTER	BUREAU OF ECONOMIC CEOLOGY	8 130 600 600
	•			
1-RESERVOIR PARAMETERS	Min Ma	3-SIMULATION PARAMETERS	4-NPV	
Pressure [MPa]	20 15 25	Simulation Time [years] 20	Drilling Cost [\$M/well] 1	
Tempreture [C]	65 50 80	Injection Well Radius [m] 0.1	Operation Cost [\$K/well/year] 500	
Thickness [m]	100 50 150	Max Injection Pressure [MPa] 30	Monitoring Cost [\$K/year/km^2] 50	20 40 60 80 100 20 40 60 80 100
Salinity [mol/Kg]	2 1 3	Estimate Max Injection Pressure Internally	Tax Credit [\$/ton]	CO2 Plume Extension Wells Well Rate (ton/day)
Porosity	0.2 0.15 0.25	Density of Porous Media [Kg/m3]	Extractors Drilling Cost [\$M/well] 1	
Permeability [mD]	100 10 250	Total Stress Ratio (V/H)	Extractors Operation Cost [SK/well/year] 500	
Rock Compressibility [1/Pa]	5e-10 3.5e-10 6.5e-10	Biot Coefficient	5-EXTRACTION PARAMETERS	
Reservoir Area [km^2]	100	Poisson's ratio	Number of Extractors 16 Minimum Extraction 20	
Basin Area [km^2]	100	Coefficient of Thermal Expansion [1/K]	Pressure [MPa] Maximum Extraction Rate 2000	
Boundary Condition	Clos 🔻	Bottom Hole Temperature Drop [K]	[m^3/day/well]	
	Brooks-Corev)	Young's Modulus [GPa]	Run	X , km X , km
Residual Water Saturation	0.5 0.3 0.7	Depth [m]	6-RESULT CONTROLS	Permeability Thickness
Residual Gas Saturation	0.05 0 0.1	Estimated Max Injection Pressure [MPa]	Number of Injection Wells 25	Porosity Krg0 -
m	3 2 4	Max Injection Rate [ton/day/well] 2000	Export Image and Output Files (Slow)	Rock Comp.
n	3 2 4	Max Number of Injectors	Wist our Website.	Sar Kra0
Kra0	1 1 1			Salinity Pressure 16
Krg0	0.3 0.20 0.4	Sensitivity Analysis (Slow)	CO2 Geological Capacity Estimation	50 100 150 200 250
				Capacity

Sensitivity Analysis

EASiToolGUI													x
Main Interface													۲
🖑 🔍 🔍 🖳 🎍													
CCCC	CU	EC	CAST			BUREAU OF LACKS	ON	8 13.5			500		—
GUP LOAT CAREON CENT							accessors		-0-0-0-0-0-0	$\rightarrow - \ominus - \phi$			
-1-RESERVOIR PARAMETERS				3-SIMULATION PARAMETERS		4-NPV		su	φ φ	¥¥		2a a	
		Min	Ma					₩ 12.5		2 -	500	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Pressure [MPa]	20	15	25	Simulation Time [years]	20	Drilling Cost (\$W/Weil)		12	X: 1	Ľ۳ ا	000	~ `	a
Tamanahan (C)	65	50	80	Injection Well Radius [m]	0.1	Operation Cost [\$K/well/year]	500	bad	Y: 11.56	-1	000		P
rempreture [O]					20	Monitoring Cost [\$K/year/km^2]	50	Ö 11.5		-1	500	50	
Thickness [m]	100	50	150	Max Injection Pressure [MPa]	30			, i	Number of Inject	ion Wells	Nur	mber of Injection	Wells
Salinity (mol/Kol	2	1	3	Estimate Max Injection Pressure In	ternally	Tax Credit [\$/ton]	10						
				Density of Porous Media (Ko/m3)		Extractors Drilling Cost [\$M/well]	1 1	10	CO2 Plume Ext	ension	10 ľ	vell Rate (ton/da	iy)
Porosity	0.2	0.15	0.25	benary of 1 orona media (righno)		Extractors Operation Cost	500			1.1			
Permeability [mD]	100	10	250	Total Stress Ratio (V/H)		[\$K/well/year]	500	0			° [
	5 . 40	25-4	0 5 0 40	Biot Coefficient		5-EXTRACTION PARAMETERS	s ———	⁶ ع		Ē	6		
Rock Compressibility [1/Pa]	56-10	5.5e-1	0.58-10			Number of Extractors	0 👻			,	4	•	
Reservoir Area [km^2]	100			Poisson's ratio		Minimum Extraction	29						
Basin Area [km^2]	100			Coefficient of Thermal Expansion [1/K]		Pressure [MPa]		2		1.1	2		
						[m^3/day/well]	2000	0			<u>م</u>		
Boundary Condition	Clos			Bottom Hole Turngerature Drop [K]		Bup	ך	C) 5	10	0	5	10
	(Dec. 21) -			Young's Modulus [GPa]		Kull		<u> </u>			<u> </u>	A , KIII	<u> </u>
Z-RELATIVE PERMEABILITY	(BIOOKS-	lorey		Dooth [m]		Simulation Time [sec]=	99	Thic	kness				▰ ┤ │
Residual Water Saturation	0.5	0.3	0.7	Debru [m]		6-RESHLT CONTROLS		Rock C	rosity - Comp				-
Residual Gas Saturation	0.05	0	0.1	Estimated Max Injection Pressure [MPa]		Number of Injection Wells 1	•		Krg0 - m -				-
m	3	2	4	Max Injection Rate (ton/day/well]	2000	Export Image and Output	iles (Slow)		Sgc - Sar -				1
						<u>Visit our website.</u>			Kra0 -				
	3	2	4	Max Number of Injectors 1	00 🔻			S: Perme	alinity - ability -				-
Kra0	1	1	1				2	Temper	aturé -			1	7
Krg0	0.3	0.20	0.4	Sensitivity Analysis (Slow)		-ASI IC	JUI	. 10	8	10 12	14	16 18	20
						CO2 Geological Capacit	y Estimation		0	Ca	pacity		20

Reservoir Area = 219 km^2

18

Synergy Opportunities

- EASiTool is an analytical simulation tool for capacity estimation in saline aquifers.
- Input data required for EASiTool is typically available for most of the projects.
- EASiTool results can be compared with the results obtain in other projects via other methods (static, simulation, etc).

Future Plans

- User defined locations for injection and extraction wells
 - Adding multiple reservoirs within the same basin
 - Pressure maps
- Improving the user interface
- Improving sensitivity analysis
- Application of to USGS database (36 Basins)
- Funding to maintain and further develop EASiTool

Summary

- Third version of EASiTool has been released.
- Calculations for maximum injection pressure.
 Integrates thermal and pore pressure stresses.
- Brine extraction option.
- Constant rate injection option.
- Sensitivity analysis.
- EASiTool is available for download:
 - <u>http://www.beg.utexas.edu/gccc/EASiTool/</u>

»Questions/Comments

Appendix

- Organization Chart
- Gantt Chart
- Bibliography
- Extra Slides

Organization Chart

Organization Chart

Project PI: Seyyed A. Hosseini								
Task 1 Project Management and Planning	Task 2 Development of Analytical Solutions for Pressure Buildup	Task 3 Rock Geomechanics Impact on Pressure Buildup and Capacity Estimation	Task 4Brine-ManagementImpact on CO2Injectivity and StorageCapacity					
Task Leader/Backup Nicot/Hosseini	Task Leader/Backup Hosseini/Sun	Task Leader/Backup Hosseini/Sun	Task Leader/Backup Hosseini/Sun					
Task 1 Team Nicot/Hosseini/ Young/Hovorka	Task 2 Team Subtask 2.1 Hosseini/Sun/ Postdoc/s Subtask 2.2 Hosseini/Sun/C12 Energy Subtask 2.3 Sun/Hosseini Subtask 2.4 Sun/Hosseini	Task 3 Team Subtask 3.1 Hosseini/Sun/ Postdoc/s Subtask 3.2 Hosseini/Sun/ Postdoc/s Subtask 3.3 Sun/Hosseini Subtask 3.4 Hosseini/Sun Subtask 3.5 Sun/Hosseini Subtask 3.6 Sun/Hosseini	Task 4 Team Subtask 4.1 Hosseini/Sun/ Postdoc/s Subtask 4.2 Sun/Hosseini/ Postdoc/s Subtask 4.3 Sun/Hosseini Subtask 4.4 Sun/Hosseini					

Gantt Chart

Bibliography

Journals

- Kim, S., Hosseini, S.A, 2013, Above-zone pressure monitoring and geomechanical analyses for a field-scale CO₂ injection project in Cranfield, MS, Greenhouse Gases: Science and Technology, 4 (1), 81-98, DOI: 10.1002/ghg.1388
- Conferences
 - Kim, Seunghee, Hosseini, S. A., and Hovorka, S. D., 2013, Numerical Simulation: Field Scale Fluid Injection to a Porous Layer in relevance to CO₂ Geological Storage: Proceedings of the 2013 COMSOL Conference, Boston, Massachusetts.
 - Kim, Seunghee, Hosseini, S. A., 2014, Optimization of Injection Rates for Geological CO₂ Storage in Brine Formations, 13th Annual Conference on Carbon Capture Utilization & Storage.
 - Kim, Seunghee, Hosseini, S. A., 2014, Effect of Pore Pressure/Stress Coupling on Geological CO₂ Storage, 13th Annual Conference on Carbon Capture Utilization & Storage. ²⁷

Analytical model

Radial distance from injection well

- Pore pressure stress coupling
 - Change in total stress ($\Delta \sigma$)is coupled with change in pore pressure(ΔP).
 - We define $\beta_h = \Delta \sigma_h / \Delta P$ and $\beta_v = \Delta \sigma_v / \Delta P$ & typically $\beta_h > \beta_v$
- Thermal stress
 - Injected CO_2 is generally colder than formation brine.
 - shrinkage of the rock formation (specially near the injection well) by $\sigma^{\Delta T} = 2\alpha_T E \Delta T / (1-2\vartheta)$
- Mohr-Coulomb shear failure criterion

$$\tau = c + (\sigma_n - \alpha \cdot P_{max})\mu$$

Kim, S, and Hosseini, S. A., 2014, Geological CO₂ storage: incorporation of pore-pressure/stress coupling and thermal effects to determine maximum sustainable pressure limit: Energy Procedia, v. 63, p. 3339-3346, http://doi.org/10.1016/j.egypro.2014.11.362.

BUREAU OF

Economic

Gulf

Coast Carbon Center

Verification of EASiTool Models

Permeability X-EASiTool2